
STAMFORD

Regulador de tensão digital STAMFORD VITA™ 01

ESPECIFICAÇÕES, CONTROLOS E ACESSÓRIOS

Índice

1.	PREFÁCIO	1
2.	PRECAUÇÕES DE SEGURANÇA	3
3.	DESCRIÇÃO	7
4.	ESPECIFICAÇÃO	ç
5.	CONTROLOS	11
6.	ACESSÓRIOS AVR	21

1 Prefácio

1.1 Informações gerais

Este documento é um guia importante para a utilização e operação pretendidos do(s) produto(s) detalhado(s) na capa frontal. Leia as informações e procedimentos neste documento. As informações e procedimentos devem ser sempre seguidos. O não-cumprimento das informações e procedimentos pode ser considerado uso indevido e provocar ferimentos, perdas ou danos a pessoas ou equipamentos.

TABELA 1. ENDEREÇOS DA EMPRESA

Endereços da empresa e do representante autorizado europeu			
Cummins Generator Technologies Cummins Generator Technologies			
Fountain Court	Bvd. Decebal 116A		
Lynch Wood	Craiova,		
Peterborough	Dolj		
PE2 6FZ	200746		
Reino Unido Roménia			

1.2 Aspetos legais

A gama de Reguladores de Tensão Digital STAMFORD VITA™ são propriedade intelectual da Cummins Generator Technologies LTD (também referida como "CGT" ou "o fabricante" ou pelas marcas "STAMFORD®" ou "AvK®" neste manual).

STAMFORD®, AvK® e STAMFORD VITA™ são marcas registadas da Cummins Generator Technologies LTD. Todos os direitos sobre o alternador, o princípio da máquina, os desenhos relacionados, etc, pertencem à Cummins Generator Technologies LTD e estão sujeitos à lei de direitos de autor. A cópia só é permitida com autorização prévia por escrito. Copyright 2022, Cummins Generator Technologies. Todos os direitos reservados. Cummins e o logótipo da Cummins são marcas registadas da Cummins Inc.

1.3 Manual de componentes

Este manual contém especificações, informações de controlo e acessórios para um Regulador de Tensão Digital STAMFORD VITA™, também conhecido como Regulador de Tensão Automático (AVR) ou Regulador de Tensão Digital (DVR).

Os reguladores de tensão STAMFORD VITA ™ destinam-se a ser usados com alternadores STAMFORD® e AvK®, produzidos pela Cummins Generator Technologies LTD (CGT).

Antes de instalar, operar ou reparar o equipamento, leia este manual. Certifique-se de que todo o pessoal que trabalha no equipamento tem acesso ao manual e a toda a documentação relacionada fornecida com o mesmo. O uso incorreto, o não cumprimento das instruções, assim como a utilização de peças não aprovadas, pode invalidar a garantia do produto e provocar perdas, lesões ou danos.

Este manual é uma parte essencial do equipamento. Certifique-se de que o manual está disponível para todo o pessoal durante a vida útil do equipamento.

O manual foi escrito para eletricistas, mecânicos e engenheiros habilitados, com conhecimentos e experiência prévia sobre este tipo de equipamento. Em caso de dúvida, contacte a sua subsidiária local da CGT.

NOTIFICAÇÃO

As informações contidas neste manual estavam corretas no momento da sua publicação. As informações poderão ser substituídas no âmbito da nossa política de desenvolvimento contínuo. Visite www.stamford-avk.com onde encontrará toda a documentação mais atual.

1.4 Idiomas do manual

Os manuais deste produto estão disponíveis nos idiomas indicados abaixo, que podem ser encontrados no site da STAMFORD® AvK®: www.stamford-avk.com. Se o manual do proprietário não estiver disponível no idioma desejado, entre em contacto com o apoio ao cliente da STAMFORD® AvK®.

TABELA 2. IDIOMAS DO MANUAL VITA 01

Idioma, tipo de manual e número de peça do documento				
Árabe (ar-sa)	Especificações, Controlos e Acessórios	A073C045		
Alemão (de-de)	Especificações, Controlos e Acessórios	A073C052		
Inglês (en-us)	Especificações, Controlos e Acessórios	A072Z023		
Espanhol (es-es)	Especificações, Controlos e Acessórios	A073C061		
Francês (fr-fr)	Especificações, Controlos e Acessórios	A073C050		
Italiano (it-it)	Especificações, Controlos e Acessórios	A073C055		
Japonês (ja-jp)	Especificações, Controlos e Acessórios	A073C057		
Polaco (pl-pl)	Especificações, Controlos e Acessórios	A073C058		
Português (pt-pt)	Especificações, Controlos e Acessórios	A073C059		
Russo (ru-ru)	Especificações, Controlos e Acessórios	A073C060		
Sueco (sv-se)	Especificações, Controlos e Acessórios	A073C062		
Chinês (zh-cn)	Especificações, Controlos e Acessórios	A073C049		

2 Precauções de segurança

2.1 Informações e avisos de segurança utilizados neste manual

Os painéis "Perigo", "Precaução" e "Cuidado" usados neste manual descrevem as fontes dos perigos, as suas consequências e como evitar ferimentos. Os painéis dos avisos chamam a atenção para instruções importantes ou críticas.

A PERIGO

"Perigo" indica uma situação perigosa que, se não for evitada, RESULTARÁ em morte ou ferimentos graves.

↑ ATENÇÃO

"Precaução" indica uma situação perigosa que, se não for evitada, PODE resultar em morte ou ferimentos graves.

⚠ AVISO

"Cuidado" indica uma situação perigosa que, se não for evitada, PODE resultar em ferimentos de menor gravidade ou ligeiros.

NOTIFICAÇÃO

"Aviso" refere-se a um método ou prática que pode provocar danos materiais ou serve para chamar a atenção para informações ou explicações suplementares.

2.2 Orientações gerais

 Estas precauções de segurança são para orientação geral. As informações destinam-se a complementar os seus próprios procedimentos de segurança e regras, leis e regulamentos aplicáveis.

2.3 Formação e competências requeridas do pessoal

As tarefas e/ou procedimentos de operação, instalação, serviço e manutenção só podem ser realizados por pessoal que:

- Tenha concluído formação relacionada, aplicável e aprovada.
- Conheça o equipamento, compreenda a(s) tarefa(s) e procedimento(s) e tenha noção dos perigos/riscos relacionados.
- Conheça e cumpra os procedimentos de emergência específicos do local e as leis e regulamentos aplicáveis.

2.4 Avaliação de riscos

 A empresa de instalação/operação/serviço/manutenção deve fazer uma avaliação de riscos para estabelecer todos os perigos e riscos relacionados. • Durante o funcionamento, o acesso ao alternador deve ser restrito a pessoal com formação e que conheça todos os perigos e riscos relevantes. Consulte: Secção 2.3 na página 3.

2.5 Equipamento de proteção individual (EPI)

O pessoal que faz a instalação, operação, reparação ou manutenção do alternador deve:

- Ter acesso ao equipamento de proteção mínimo recomendado (consulte a imagem abaixo). O
 equipamento de proteção deve ser aprovado para a tarefa ou procedimento.
- Saber como utilizar corretamente o equipamento de proteção, consulte: Secção 2.3 na página
 3
- Usar equipamento de proteção conforme indicado na avaliação de riscos, consulte: Secção 2.4 na página 3.

FIGURA 1. EQUIPAMENTO DE PROTEÇÃO INDIVIDUAL (EPI) MÍNIMO RECOMENDADO

2.6 Ferramentas e equipamento

Todo o pessoal deve saber como utilizar as ferramentas e equipamento com segurança, consulte: Secção 2.3 na página 3.

Todas as ferramentas e equipamento utilizados devem ser:

- · Adequados para a tarefa e procedimento.
- Eletricamente isolados (não abaixo da tensão de saída do alternador), consulte: Secção 2.4 na página 3.
- Em condições para serem utilizados em segurança.
- Incluídos na avaliação de riscos, consulte: Secção 2.4 na página 3.

2.7 Sinais informativos de segurança

O equipamento possui sinais informativos de segurança para assinalar os perigos e chamar a atenção para as instruções. Antes de operar o equipamento:

• O pessoal deve conhecer e compreender os sinais informativos de segurança do alternador e os perigos/riscos associados.

FIGURA 2. EXEMPLO DE SINAIS INFORMATIVOS DE SEGURANÇA

Os sinais informativos de segurança variam dependendo da especificação do alternador.

2.8 Precauções de segurança do regulador de tensão automático

№ PERIGO

Condutores elétricos com corrente

Os condutores elétricos com corrente podem causar ferimentos graves ou morte por choque elétrico e queimaduras. Para evitar ferimentos e antes de trabalhar em condutores com corrente:

- Desligue e isole o alternador de todas as fontes de energia.
- · Remova ou isole a energia armazenada.
- Teste as peças isoladas quanto ao isolamento elétrico usando um testador de tensão adequado.
- Use procedimentos de segurança de bloqueio/etiquetagem.

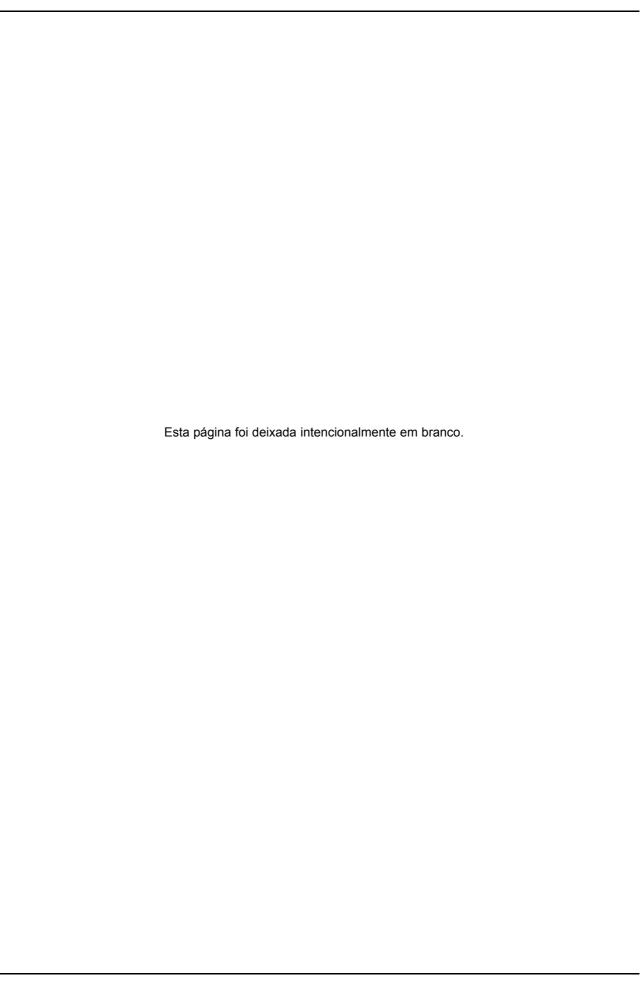
№ PERIGO

Condutores elétricos com corrente

O regulador automático de tensão, terminais de acessório do RAT e dissipador de calor do RAT podem causar ferimentos graves ou morte por choque elétrico e queimaduras. Para prevenir ferimentos:

 Tome precauções adequadas para prevenir contacto com condutores com corrente, por exemplo, usando barreiras e ferramentas de isolamento, e utilizando equipamento de proteção individual; consulte o capítulo Precauções de segurança.

⚠ ATENÇÃO


Instalar um regulador automático de tensão (AVR)

Um AVR incorretamente configurado pode resultar em avarias ou danos do equipamento que podem causar ferimentos ou morte. Antes de instalar, operar / ajustar ou substituir um regulador automático de tensão, todo o pessoal deve:

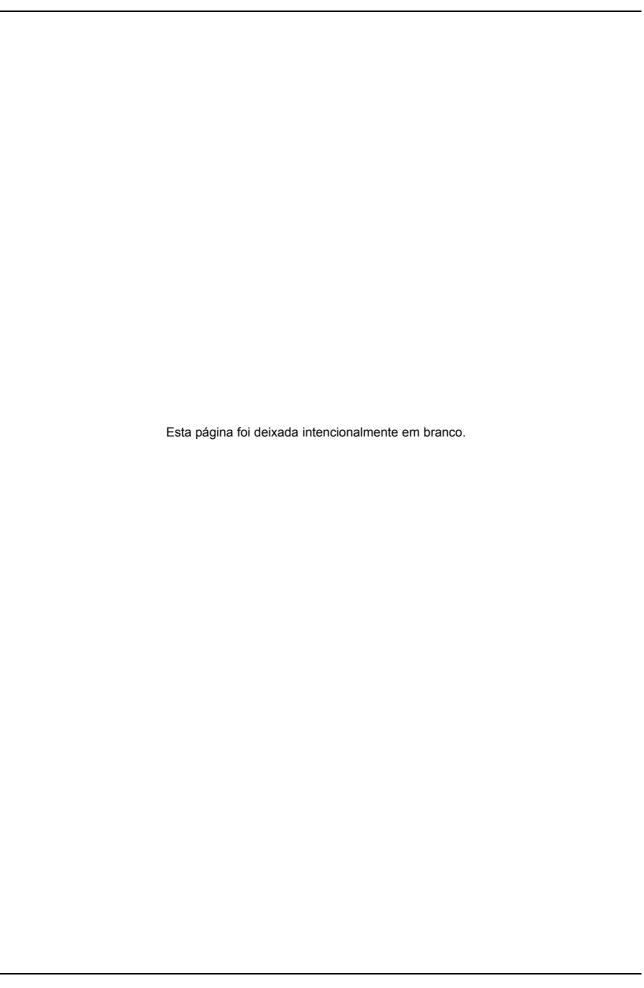
- · Ler e cumprir as instruções contidas neste manual.
- Ler e cumprir todas as instruções do manual do operador original para o alternador no qual o trabalho está a ser realizado.
- Conhecer o equipamento, compreender a(s) tarefa(s) e procedimento(s).
- Ter noção de todos os perigos/riscos associados.
- Conhecer e compreender os procedimentos de emergência específicos do local e as leis e regulamentos locais aplicáveis.

NOTIFICAÇÃO

Consulte o diagrama de cablagem do alternador para mais informações sobre as ligações.

3 Descrição

3.1 Alternadores auto-excitados/de enrolamento auxiliar controlados por AVR


Um AVR com saída de enrolamento auxiliar/auto-excitado recebe alimentação dos terminais de saída do alternador ou do enrolamento auxiliar. O AVR controla a tensão de saída do alternador através do ajuste automático da intensidade do campo do estator do excitador.

3.1.1 AVR alimentado por estator principal

O AVR faz o controlo de circuito fechado detetando a tensão de saída do alternador nos enrolamentos do estator principal e ajustando a intensidade de campo do estator do excitador. A tensão induzida no rotor do excitador, retificada pelos díodos rotativos, magnetiza o campo principal rotativo que induz tensão nos enrolamentos principais do estator. Um AVR auto-excitado recebe alimentação dos terminais de saída do alternador ou de um enrolamento auxiliar especial no enrolamento do estator principal.

5 6 3 2 1 N.º N.º Descrição Descrição 1 5 **AVR** Campo principal (rotor) Díodos rotativos Induzido principal (estator) ou enrolamento auxiliar (se instalado) 7 3 Induzido do excitador (rotor) Saída Campo do excitador (estator) 8 Veio do rotor

TABELA 3. AVR ALIMENTADO POR ESTATOR PRINCIPAL

4 Especificação

4.1 Especificações técnicas STAMFORD VITA01

- · Entrada de deteção da tensão
 - Tensão: 95 VCA a 132 VCA ou 170 VCA a 300 VCA, monofásico¹
 - Frequência: 50 Hz a 60 Hz, nominal²
- · Entrada de alimentação
 - Tensão: 95 VCA a 300 VCA, apenas monofásico
 - Frequência: 50 Hz a 60 Hz, nominal
- · Saída de potência
 - Tensão: entrada de 90 VCC a 240 VCA
 - · Corrente:
 - 4 A contínuo
 - Sobrecarga de 6 A durante 1 minuto
 - 10 A temporário durante 10 segundos
 - Resistência: mínimo de 13 Ω a 20 °C
- Regulação
 - +/- 0.5% RMS³
- · Desvio térmico
 - 0,025% para uma alteração de 1 °C na temperatura ambiente⁴
- · Resposta típica
 - Resposta do AVR em 20 ms
 - Corrente de campo a 90% em 80 ms
 - Volts da máquina a 97% em 300 ms
- · Potenciómetro de ajuste de tensão externa
 - +/- 10% com 1kΩ, condensador de 1W⁵
- · Proteção contra subfrequência
 - Valor de ajuste 94% a 98% Hz⁶
- Dissipação de potência da unidade
 - 10 W no máximo
- · Acumulação de tensão
 - 4 VCA RMS nos terminais de entrada de alimentação do AVR

¹ Selecionado pelo interruptor 1.

² Selecionado por jumper.

Com 4% de regulação de motor

Após 2 minutos.

⁵ A redução do alternador pode ser aplicada. Confira com a fábrica.

⁶ Ligação semi-selada para seleção de 50 Hz.

· Entrada de estatismo

Esforço: 0,15 Ω

Sensibilidade máxima: 0,1 A para estatismo de 5%, fator de potência zero

Entrada máxima: 0,33 A

· Deteção de excitação de sobretensão

Ponto de ajuste: 65 VCC a 80 VCC⁷

Atraso: 10 a 15 segundos (fixo)

Ambiental

Vibração:

• 20 Hz a 100 Hz: 50 mm/seg.

• 100 Hz a 2 KHz: 3,3 g

∘ Temperatura de funcionamento: -40 °C a +70 °C8

Humidade relativa 0 °C a 70 °C: 95%³

Temperatura de armazenamento: -55 °C a +80 °C

⁷ Semi-selado em fábrica.

Reduza a corrente de saída em 5% por 1° C acima de 60° C.

Sem condensação.

5 Controlos

▲ PERIGO

Condutores elétricos com corrente

Os condutores elétricos com corrente podem causar ferimentos graves ou morte por choque elétrico e queimaduras. Para evitar ferimentos e antes de trabalhar em condutores com corrente:

- Desligue e isole o alternador de todas as fontes de energia.
- · Remova ou isole a energia armazenada.
- Teste as peças isoladas quanto ao isolamento elétrico usando um testador de tensão adequado.
- Use procedimentos de segurança de bloqueio/etiquetagem.

⚠ PERIGO

Condutores elétricos com corrente

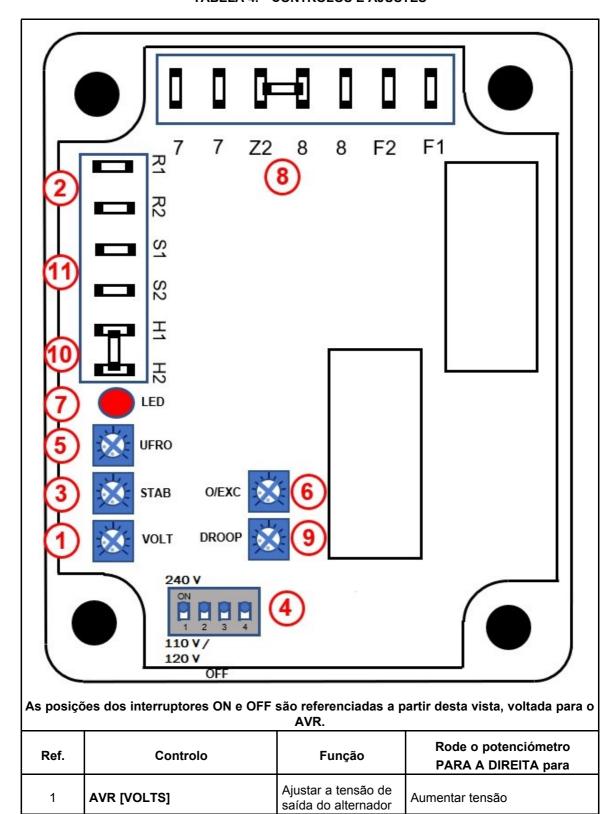
O regulador automático de tensão, terminais de acessório do RAT e dissipador de calor do RAT podem causar ferimentos graves ou morte por choque elétrico e queimaduras. Para prevenir ferimentos:

 Tome precauções adequadas para prevenir contacto com condutores com corrente, por exemplo, usando barreiras e ferramentas de isolamento, e utilizando equipamento de proteção individual; consulte o capítulo Precauções de segurança.

↑ ATENÇÃO

Instalar um regulador automático de tensão (AVR)

Um AVR incorretamente configurado pode resultar em avarias ou danos do equipamento que podem causar ferimentos ou morte. Antes de instalar, operar / ajustar ou substituir um regulador automático de tensão, todo o pessoal deve:


- Ler e cumprir as instruções contidas neste manual.
- Ler e cumprir todas as instruções do manual do operador original para o alternador no qual o trabalho está a ser realizado.
- Conhecer o equipamento, compreender a(s) tarefa(s) e procedimento(s).
- Ter noção de todos os perigos/riscos associados.
- Conhecer e compreender os procedimentos de emergência específicos do local e as leis e regulamentos locais aplicáveis.

NOTIFICAÇÃO

Consulte o diagrama de cablagem do alternador para mais informações sobre as ligações.

5.1 Controlos e ajustes

TABELA 4. CONTROLOS E AJUSTES

2	R1-R2 aberto: Sem condensador 1 KΩ,1 W em R1-R2: Condensador manual	Ajustar a tensão de saída do alternador remotamente	Aumentar tensão
3	AVR [STAB]	Ajustar a estabilidade para prevenir a oscilação da tensão	Aumentar efeito de amortecimento
4	Interruptor 1: Tensão de alimentação Interruptor ON : 240 V Interruptor OFF : 110 V/120 V	Selecionar tensão de alimentação do AVR	N.A.
7	Interruptores de seleção de estabilidade: 2, 3, 4. Consulte a TABELA 5.	Seleção de interruptor com base na estrutura do alternador	N.A.
5	AVR [UFRO]	Ajustar o "cotovelo" do roll-off de subfrequência [UFRO]	Aumentar frequência do "cotovelo" UFRO
6	AVR [O/EXC]	Ajustar o disparo de sobre-excitação	Aumentar tensão de disparo
7	Díodo emissor de luz (LED) 1 piscadela: Ativo para UFRO 2 piscadelas: ativo para O/EXC 3 piscadelas: ativo para UFRO e O/EXC	O LED acende na(s) condição(ões) UFRO e/ou O/EXC	P2 sec PT
8	Ligação: SUPPLY 8-Z2: Estator principal Sem ligação: Enrolamento auxiliar	Entrada de energia e terminais de entrada de deteção do AVR	N.A.
9	AVR [DROOP]	Alternador com estatismo a 5% com fator de potência zero	Aumentar estatismo
10	Frequência de ligação H1-H2: 50 Hz : Usar ligação 60 Hz : Sem ligação	Selecionar frequência do alternador	N.A.
11	Ligação Máxima DROOP CT S1-S2 0,33 A Secundária para corrente primária	Entrada de corrente para funcionalidade DROOP	N.A.

TABELA 5. INTERRUPTORES DE SELEÇÃO DE ESTABILIDADE

	Números dos interruptores de estabilidade			
Armação	2	3	4	
S0L1	Apagado	Apagado	Apagado	
S0L2	ATIVADO	Apagado	Apagado	

. ~	Números dos interruptores de estabilidade			
Armação	2	3	4	
S1L2	Apagado	ATIVADO	Apagado	
UC22 e S2	ATIVADO	ATIVADO	Apagado	
UC27 e S3	Apagado	Apagado	ATIVADO	

5.2 Configuração inicial do AVR

NOTIFICAÇÃO

O AVR deve ser configurado apenas por pessoal de serviço treinado e autorizado. Não exceda a tensão de funcionamento segura indicada na placa de identificação do alternador.

Os controlos do AVR são configurados na fábrica para a realização de testes de funcionamento inicial. Verifique se as configurações do AVR são compatíveis com a saída necessária para o utilizador final. Não ajuste os controlos que se encontram selados. Para configurar um AVR de substituição, siga estes passos:

- 1. Desligue o grupo eletrogéneo e isole-o.
- Desligue e remova o AVR existente (se instalado). Instale e ligue o AVR de substituição. Consulte o diagrama de ligações: Secção 5.1 na página 12.
- Rode o controlo do AVR [VOLTS] totalmente para a esquerda. Consulte: Secção 5.3 na página 14.
- 4. Rode o condensador manual (se instalado), meia volta (50%), para a posição do meio.
- Rode o controlo AVR [STAB] meia volta (50%), para a posição do meio. Consulte: Secção 5.4 na página 15.
- 6. Ligue um voltímetro adequado (intervalo de 0 a 300 VCA) entre uma fase de saída e o neutro.
- 7. Coloque o grupo eletrogéneo a funcionar sem carga.
- 8. Ajuste a velocidade para a frequência nominal (50 a 53 Hz ou 60 a 63 Hz). Se o LED estiver aceso, ajuste o controlo **AVR [UFRO]**. Consulte: **Secção 5.5 na página 16**.
- 9. Rode cuidadosamente o controlo AVR [VOLTS] até o voltímetro apresentar a tensão nominal.
- Se a tensão estiver instável, ajuste o controlo de estabilidade AVR [STAB]. Consulte: Secção 5.4 na página 15.
- 11. Reajuste o controlo AVR [VOLTS], conforme necessário.

5.3 Regular o controlo de tensão [VOLTS] do AVR

NOTIFICAÇÃO

Não exceda a tensão de funcionamento segura indicada, mostrada na placa de identificação do alternador.

NOTIFICAÇÃO

Os terminais do condensador manual podem estar acima do potencial de terra. Não ligue à terra nenhum dos terminais do condensador manual. A ligação à terra de terminais do condensador manual pode causar danos no equipamento.

Para regular o controlo de [VOLTS] do AVR de tensão de saída no AVR:

- 1. Verifique a placa de identificação do alternador para confirmar a tensão de funcionamento segura indicada.
- Regule o controlo de [VOLTS] do AVR para 0%, posição totalmente contrária aos ponteiros do relógio.

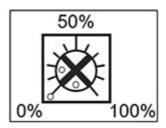


FIGURA 3. POSIÇÃO 0%

3. Os terminais R1 e R2 são mantidos abertos sem a opção de condensador manual. Ligue o condensador manual remoto aos terminais R1 e R2 quando necessário.

NOTIFICAÇÃO

Se estiver ligado um condensador manual remoto, regule-o para 50%, posição do meio. Se os terminais R1 e R2 estiverem ligados, a tensão do terminal cairá para um nível mínimo de tensão.

- 4. Rode o controlo de [STAB] do AVR para 50%, posição do meio.
- 5. Ligue o alternador e coloque-o à velocidade de funcionamento correta.
- Se o diodo emissor de luz (LED) vermelho estiver aceso, consulte <u>Secção 5.5 na página 16</u> para ajustar a subfrequência de [UFRO] do AVR.
- 7. Ajuste o controlo de **[VOLTS] do AVR** lentamente no sentido dos ponteiros do relógio para aumentar a tensão de saída.

NOTIFICAÇÃO

Se a tensão estiver instável, defina a estabilidade do AVR antes de prosseguir, consulte: Secção 5.4 na página 15.

- 8. Ajuste a tensão de saída para o valor nominal pretendido (VCA).
- 9. Se houver instabilidade à tensão nominal, consulte o ajuste de **[STAB] do AVR** e depois ajuste os **[VOLTS] do AVR** novamente, se for necessário.
- 10. Se um condensador manual remoto estiver ligado, verifique a sua operação, consulte <u>Secção</u> 6.2 na página 23 para operar o condensador manual.

NOTIFICAÇÃO

0% a 100% de rotação corresponde a 90% a 110% VCA.

O controlo de **[VOLTS] do AVR** encontra-se agora regulado.

5.4 Regular o controlo de estabilidade [STAB] do AVR

- 1. Verifique a placa de identificação para confirmar a especificação de potência do alternador.
- 2. Verifique se as seleções dos interruptores 2,3 e 4 correspondem à estrutura do alternador para obter uma resposta de estabilidade ideal.

3. Regule o controlo da [STAB] do AVR para a posição 75%, aproximadamente.

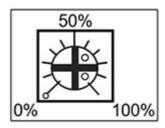


FIGURA 4. POSICÃO 75%

- 4. Ligue o alternador e coloque-o à velocidade de funcionamento correta.
- 5. Verifique se a tensão do alternador está dentro dos limites de segurança.

NOTIFICAÇÃO

Se a tensão for instável, consulte: Secção 5.3 na página 14 imediatamente.

- 6. Ajuste o controlo da **[STAB] do AVR** lentamente no sentido contrário ao dos ponteiros do relógio até a tensão de saída ficar instável.
- 7. Ajuste o controlo da **[STAB] do AVR** lentamente no sentido dos ponteiros do relógio até a tensão de saída ficar estável.
- 8. Ajuste o controlo da [STAB] do AVR mais 5% no sentido dos ponteiros do relógio.

NOTIFICAÇÃO

Se necessário, consulte Secção 5.3 na página 14 para reajustar o nível de tensão.

O controlo da [STAB] do AVR encontra-se agora regulado.

5.5 Regular o controlo roll-off de subfrequência [UFRO] do RAT

Abaixo da frequência limiar UFRO ("cotovelo"), a proteção de subvelocidade do AVR opera para reduzir ('roll-off') a tensão de excitação em proporção à frequência do alternador. O LED do AVR acende com 1 piscada quando o UFRO é ativado.

1. Verifique a placa de identificação para confirmar a frequência do alternador.

NOTIFICAÇÃO

Isole a fonte de alimentação do AVR (pare o alternador e a força motriz principal). Ajustar as ligações de seleção de frequência para o modo 60 Hz para um alternador de 50 Hz pode resultar em baixa tensão. Ajustar as ligações de seleção de frequência para o modo 50 Hz para um alternador de 60 Hz pode resultar no sobreaquecimento dos enrolamentos em condições de baixa velocidade.

- 2. Verifique se as ligações correspondem à frequência do alternador.
- 3. Regule o controlo [UFRO] do AVR para 100%, no sentido dos ponteiros do relógio.

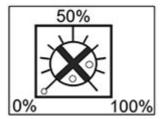


FIGURA 5. POSIÇÃO 100%

- 4. Ligue o alternador e coloque-o à velocidade de funcionamento correta.
- 5. Verifique se a tensão do alternador está correta e estável.

NOTIFICAÇÃO

Se a tensão estiver alta/baixa/instável, use os métodos detalhados em <u>Secção 5.3 na</u> página 14 ou <u>Secção 5.4 na página 15</u> antes de prosseguir.

- 6. Reduza a velocidade do alternador para cerca de 95% da velocidade de funcionamento correta, ou seja, 47,5 Hz para funcionamento a 50 Hz, 57,0 Hz para funcionamento a 60 Hz.
- 7. Ajuste o controlo **[UFRO] do AVR** lentamente no sentido contrário aos ponteiros do relógio até que o LED do AVR acenda com 1 piscadela.

FIGURA 6. LED ILUMINADO

8. Ajuste o controlo **[UFRO] do AVR** lentamente no sentido dos ponteiros do relógio até o LED do AVR apagar.

FIGURA 7. LED APAGADO

NOTIFICAÇÃO

Não passe o ponto no qual o LED está apenas apagado.

9. Ajuste a velocidade do alternador novamente para 100% nominal. O LED deve estar apagado.

FIGURA 8. LED APAGADO

O controlo [UFRO] do AVR encontra-se agora regulado.

5.6 Ajuste o controlo de sobreexcitação do RAT [O/EXC]

NOTIFICAÇÃO

O controlo do RAT [O/EXC] é ajustado e selado na fábrica para proteger o alternador de sobreexcitação, geralmente causada por sobrecarga. A configuração incorreta do controlo do RAT [O/EXC] pode danificar os componentes do rotor do alternador.

O RAT protege o alternador limitando a excitação se detetar que a tensão de excitação excede um limite definido pelo controlo do **RAT [O/EXC]**. O LED do RAT pisca 2 vezes quando O/EXCITATION é ativado.

- Se a tensão de excitação exceder a configuração do limite de sobreexcitação, o LED vermelho no RAT acende.
- Após um atraso de tempo predefinido, o RAT limita a tensão de excitação e o LED vermelho pisca 2 vezes.
- 3. Pare o alternador para investigar a causa da sobreexcitação.

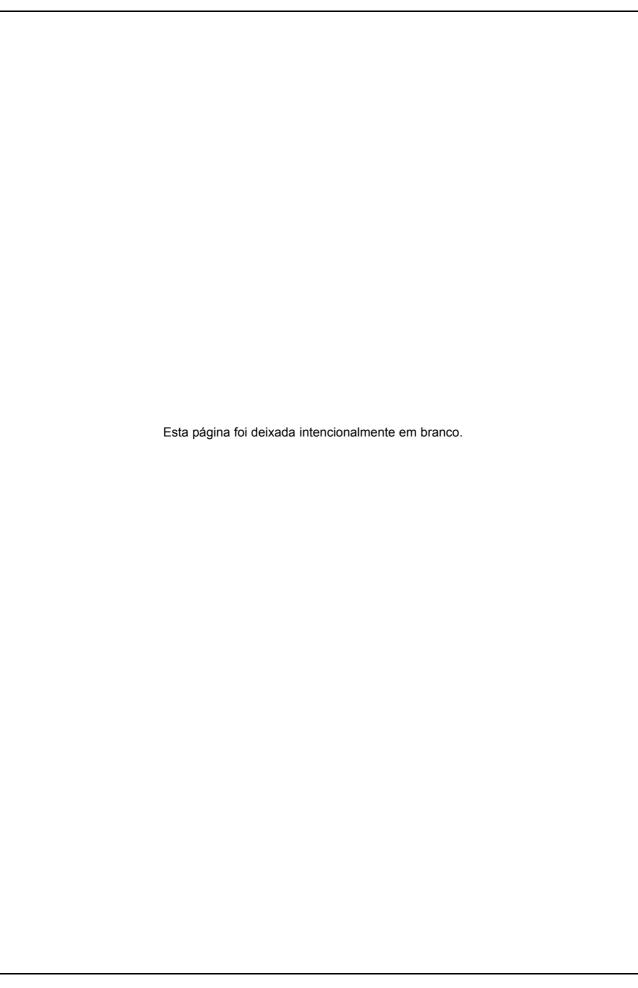
NOTIFICAÇÃO

Quando as funcionalidades UFRO e O/EXC são ativadas, o LED pisca 3 vezes.

5.7 Ajustar o controlo DROOP de tensão [DROOP] do RAT para operação paralela

NOTIFICAÇÃO

O controlo do RAT [DROOP] é ajustado e selado na fábrica para proteger o alternador de queda de tensão indesejável, pois deve ser usado apenas ao colocar o alternador em paralelo com outros alternadores. A configuração incorreta do controlo do RAT [DROOP] pode causar queda de tensão indesejável.


Um transformador de corrente (CT) de estatismo montado e ajustado corretamente permite que o alternador partilhe corrente reativa para um funcionamento em paralelo estável.

- 1. Monte transformador de corrente no condutor de fase correto dos enrolamentos de saída principais do alternador.
- 2. Ligue os dois cabos secundários marcados S1 e S2 do CT aos terminais S1 e S2 do RAT.
- 3. Rode o controlo do [DROOP] do RAT para a posição do meio.
- 4. Ligue os alternadores e coloque à velocidade e tensão de funcionamento corretas.
- 5. Coloque o(s) alternador(es) em paralelo de acordo com o(s) manual(is) de instalação original(is) do fabricante e todos os regulamentos locais aplicáveis.
- Regule o controlo do [DROOP] do RAT para produzir o equilíbrio necessário entre as correntes de saída dos alternadores individuais. Regule o estatismo do RAT para sem carga e depois verifique as correntes quando a carga de saída for aplicada, com carga.
- 7. Se as correntes de saída dos alternadores individuais subirem (ou descerem) de uma forma descontrolada, isole e pare os alternadores e depois verifique se:
 - O transformador de estatismo está montado na fase correta e na polaridade correta (ver os diagramas de cablagem da máquina).
 - Os cabos secundários S1 e S2 do transformador estão ligados aos terminais S1 e S2 do RAT.

• O transformador de estatismo corresponde à especificação correta.

NOTIFICAÇÃO

Consulte as instruções e o diagrama de ligação.

6 Acessórios AVR

Os acessórios para suportarem as funções AVR são montados de fábrica ou fornecidos separadamente com instruções para montagem e ligação da cablagem a realizar por um técnico competente.

6.1 Módulo do detetor de falhas do díodo

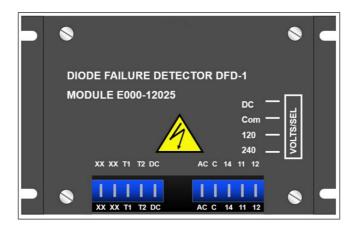


FIGURA 9. MÓDULO DO DETETOR DE FALHAS DO DÍODO

6.1.1 Descrição do DFD

O detetor de falhas do díodo (DFD) da STAMFORD deteta a ondulação da corrente, na saída de corrente de excitação, provocada por falhas do díodo em curto-circuito ou em circuito aberto, e liga um relé interno caso esta situação persista durante 7 segundos.

Os contactos de comutação do relé podem ser ligados de forma a emitir um sinal de aviso de falha do díodo ou a acionar um encerramento automático.

Quando o DFD emitir um aviso, monitorize a corrente de excitação ou a tensão e reduza a carga conforme necessário, para que o grupo eletrogéneo possa continuar a funcionar até ao encerramento controlado planeado para a substituição do díodo.

Principais características:

- · Sistema eletrónico de estado sólido robusto e fiável
- Função de teste integrada
- · Fonte de alimentação selecionável
- · Ligação simples ao alternador.

6.1.2 Especificações técnicas do DFD

- Entrada de deteção da tensão
 - Tensão: 0 V CC a 150 V CC
 Resistência de entrada: 100 kΩ
 Sensibilidade: 50 V, pico
- Alimentação
 - Tensão: 12 V CC a 28 V CC
 Tensão: 100 V CA a 140 V CA
 Tensão: 200 V CA a 280 V CA

Corrente: máximo 0,2 A

Saída

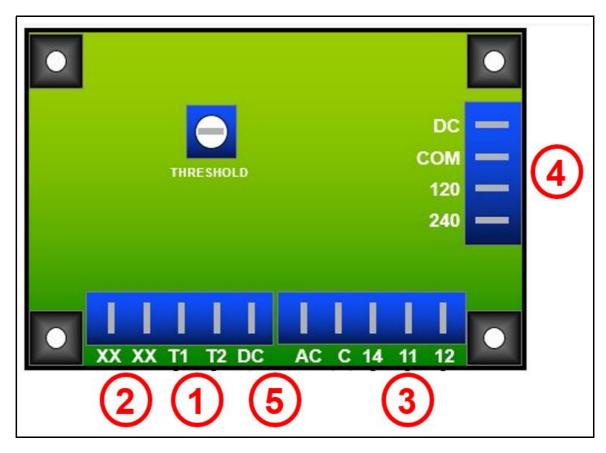
- Corrente nominal do relé inversor de um só pólo: 5 A a 30 V CC, 5 A a 240 V CA
- ∘ Isolamento: 2 kV
- · Contactos sem tensão

· Atraso de tempo

· Tempo de resposta: 7 s (aproximadamente)

Ambiental

- Vibração: 30 mm/s a 20 Hz a 100 Hz, 2 g a 100 Hz a 2 kHz
- Humidade relativa: 95%
- Temperatura de armazenamento: -55 °C a +80 °C
- Temperatura de funcionamento: -40 °C a +70 °C

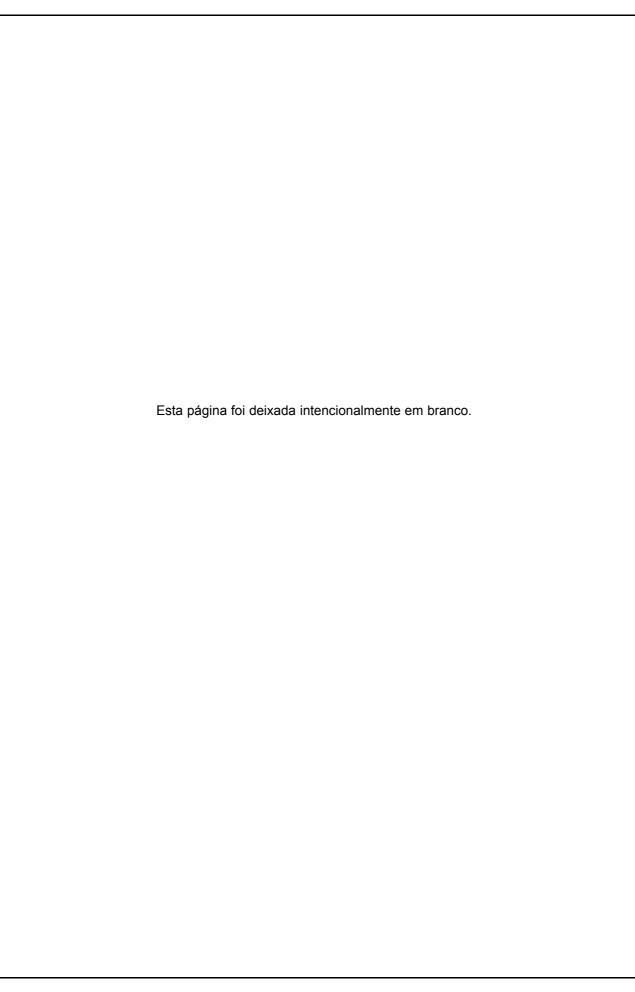

6.1.3 Montagem do DFD

NOTIFICAÇÃO

Consulte o diagrama de cablagem do alternador para obter detalhes sobre a ligação; Monte o DFD num quadro elétrico ou placa de base, não na caixa de terminais do alternador.

6.1.4 Controlos

TABELA 6. CONTROLOS DO DETETOR DE FALHAS DO DÍODO



Ref.	Controlo	Função
1	Ligação: teste T1-T2	Função de teste do DFD
2	Entrada de deteção da tensão XX, XX	Ligue o F2 em série, entre o estator do excitador e o AVR
3	Contactos da saída do relé 11-14: normalmente aberto 11-12: normalmente fechado	Ligue ao sistema de alerta externo ou ao sistema de paragem
4	Ligação: tensão de alimentação COM-DC: 12 VCC a 28 VCC COM-120: 100 VCA a 140 VCA COM-240: 200 VCA a 280 VCA	Selecione tensão de alimentação VCC ou VCA
5	Alimentação CC: VCC positivo (alimentação VCC) ¹⁰ C: VCC negativo (alimentação VCC) CA: P2 do PMG (alimentação VCA) C: P3 do PMG (alimentação VCA)	Ligue a alimentação VCC ou VCA

6.2 Condensador manual (para ajuste remoto de tensão)

Um condensador manual pode ser montado numa posição conveniente (normalmente no painel de controlo do grupo eletrogéneo) e ligado ao RAT para fazer o ajuste fino da tensão do alternador. O valor do condensador manual e o ajuste devem ser conforme definidos no capítulo **Especificações técnicas**. Consulte o diagrama de cablagem antes de remover a ligação de curto-circuito e ligar o condensador manual.

¹⁰ Desligar para repor DFD.

