

S0L1-L1 - Technical Data Sheet

Standards

Stamford industrial alternators meet the requirements of IEC EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100 and AS1359. Other standards and certifications can be considered on request.

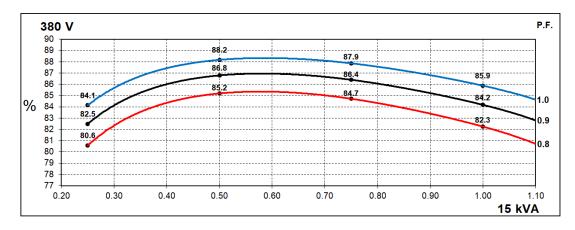
Quality Assurance

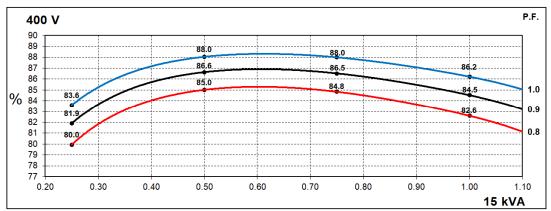
Alternators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

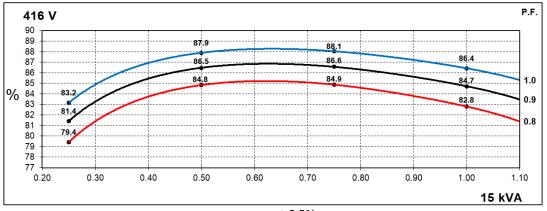
Excitation and Voltage Regulators

Excitation System						
AVR Type	AVR Power					
VITA01	Self-Excited					
Voltage Regulation	± 0.5%					
No Load Excitation Voltage (V)	7.9 V					
Full Load Excitation Voltage (V)	42.8 V					

	C	Class H							
Two Thirds									
12									
14									
1P23									
	,								
380			_						
•			_						
			_						
220	230	240							
15	15	15	-						
Ratings and Voltage	jes								
2.142	1.933	1.787	-						
0.125	0.112	0.104	-						
0.115	0.104	0.096	-						
1.439	-								
0.210	0.189	0.175	-						
0.074	-								
0.225	0.203	0.188	-						
0.013	0.012	0.011	-						
ase Ratings and Vol	tages								
2.570	2.319	2.144	-						
0.143	0.129	0.120	-						
0.135	0.121	0.112	-						
1.483	1.338	1.237	-						
0.252	0.227	0.210	-						
			1						
0.084	0.076	0.070	-						
	0.076 0.244	0.070 0.226	-						
0.084			-						
0.084 0.270	0.244	0.226	-						
0.084 0.270	0.244 0.014	0.226	- - -						
0.084 0.270	0.244	0.226 0.013	-						
0.084 0.270	0.244 0.014	0.226 0.013	-						
	380 190 220 15 Ratings and Voltage 2.142 0.125 0.115 1.439 0.210 0.074 0.225 0.013 38e Ratings and Vol 2.570 0.143 0.135	EN 61000-6-2 & EN 6100 NO LOAD < 2.5% NON-DISTORT 380	12 14 4 IP23 EN 61000-6-2 & EN 61000-6-4, refer to factory NO LOAD < 2.5% NON-DISTORTING BALANCED LIN 1/Xd N/A 60 Hz TIF<75 380 400 416 190 200 208 220 230 240 15 15 15 Ratings and Voltages 2.142 1.933 1.787 0.125 0.112 0.104 0.115 0.104 0.096 1.439 1.299 1.201 0.210 0.189 0.175 0.074 0.067 0.062 0.225 0.203 0.188 0.013 0.012 0.011 ase Ratings and Voltages 2.570 2.319 2.144 0.143 0.129 0.120 0.135 0.121 0.112 1.483 1.338 1.237						

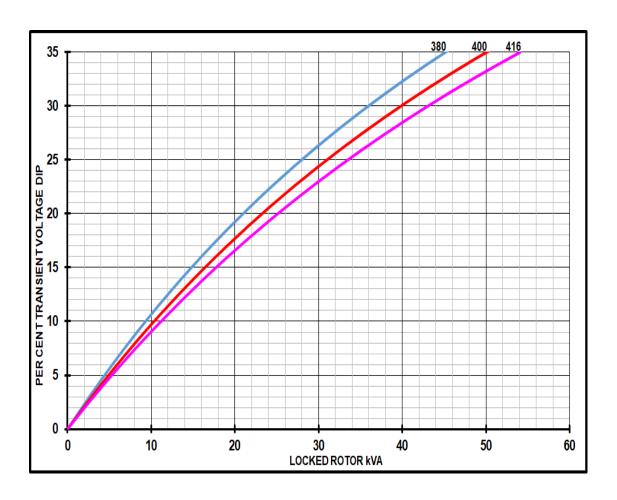



Resistances in Ohms (Ω) at 22°C								
Stator Winding Resistance (Ra)	$0.576~\Omega$ per phase series star connected							
Rotor Winding Resistance (Rf)	0.466 Ω							
Exciter Stator Winding Resistance	17.638 Ω							
Exciter Rotor Winding Resistance	$0.101~\Omega$ per phase							
Positive Sequence Resistance (R1)	0.101 Ω per phase 0.72 Ω							
Negative Sequence Resistance (R2	0.829 Ω							
Zero Sequence Resistance (R0)	0.72 Ω							
Aux Winding Resistance	N/A							
Mechanical data								
Cooling Air	0.07 m³/sec							
	All alternator rotors are dynamically balanced to better than							
Shaft and Keys	BS6861: Part 1 Grade 2.5 for minimum vibration in operation.							
Bearing	Single Bearing							
Weight Complete Alternator	85.3 kg							
Weight Wound Stator	32.5 kg							
Weight Wound Rotor	29.3 kg							
Moment of Inertia	29.3 kg 0.071 kgm²							
Shipping weight in a Crate	124 kg							
Packing Crate Size	930X590X760 mm							
Maximum Over Speed	2250 RPM for two minutes							
Bearing Drive End	N/A							
Bearing Non-Drive End	Ball Bearing, 6305-2RS1							



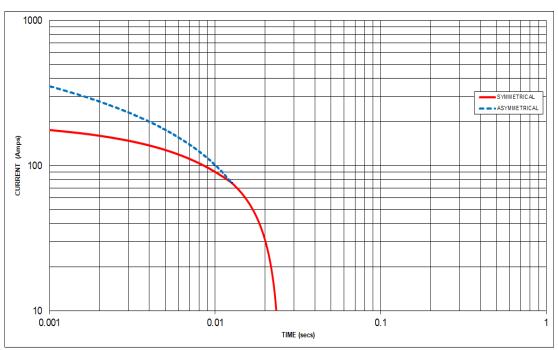
Three Phase Efficiency Curves

60Hz Curves



Locked Rotor Motor Starting Curves

60Hz


Transient Voltage	Dip Scaling Factor	Transient Voltage Rise Scaling Factor					
Lagging PF	Scaling Factor	Lagging PF	Scaling Factor				
<= 0.4	1.00	<= 0.4	1.25				
0.5	0.95	0.5	1.20				
0.6	0.90	0.6	1.15				
0.7	0.86	± 0.5%	1.10				
0.8	0.83	> 0.7	1.00				
0.9	0.75						
0.95	0.70						
1	0.65	1					

Note: To determine % Transient Voltage Dip or Rise at various PF, multiply the % Voltage Dip from the curve directly by the scaling factor.

S0L1-L1 Winding 14 Three-phase Short Circuit Decrement Curve

60Hz

Note 1

The following multiplication factors should be used to adjust the values from curve between time 0.001 seconds and the minimum current point in respect of nominal operating voltage:

50Hz		60Hz				
Voltage	Factor	Voltage	Factor			
-	-	380V	X 1.00			
-	-	400V	X 1.05			
-	-	416V	X 1.09			
-	-	-	-			

The sustained current value is constant irrespective of voltage level

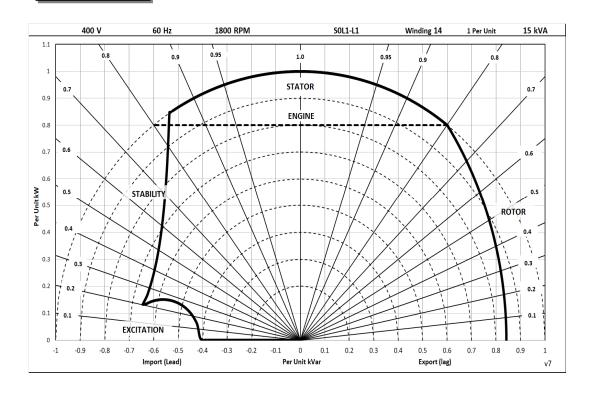
Note 2

The following multiplication factor should be used to convert the values calculated in accordance with NOTE 1 to those applicable to the various types of short circuit:

± 0.5%	3-phase	2-phase L-L	1-phase L-N
Instantaneous	x 1.00	x 0.87	x 1.30
Minimum	x 1.00	x 1.80	x 3.20
Sustained	N/A	N/A	N/A
Max. sustained duration	10 sec.	5 sec.	2 sec.

All other times are unchanged

Note 3


Curves are drawn for Star connected machines under no-load excitation at rated speeds. For other connection the following multipliers should be applied to current values as shown: Parallel Star = Curve current value X 2

Series Delta = Curve current value X 1.732

Typical Alternator Operating Charts

400V/60Hz

RATINGS AT 0.8 POWER FACTOR

	Class - Temp Rise	Standby - 163/27℃				Sta	Standby - 150/40 ℃			Cont. H - 125/40 ℃				Cont. F - 105/40 ℃			
5	Series Star (V)																
3	Parallel Star (V)				N/A			N/A				N/A					
	Series Delta (V)																
	kVA				N/A			N/A				N/A					
	kW	N/A															
	Efficiency (%)		N/A		IV/A			IVA			IVA						
	kW Input																
						1				1							
6	Series Star (V)	380	400	416	-	380	400	416	-	380	400	416	-	380	400	416	-
	Parallel Star (V)	190	200	208	-	190	200	208	-	190	200	208	-	190	200	208	-
	Series Delta (V)	220	230	240	-	220	230	240	-	220	230	240	-	220	230	240	-
	kVA	16.4	16.4	16.4	-	15.8	15.8	15.8	-	15.0	15.0	15.0	-	13.5	13.5	13.5	-
	kW	13.1	13.1	13.1	-	12.6	12.6	12.6	-	12.0	12.0	12.0	-	10.8	10.8	10.8	-
	Efficiency (%)	80.9	81.3	81.6	-	81.5	81.9	82.1	-	82.3	82.6	82.8	-	83.5	83.7	83.9	-

De-Rates

All values tabulated above are subject to the following reductions:

- 3% for every 500 meters by which the operating altitude exceeds 1000 meters above mean sea level
- 3% for every 5 °C by which the operational ambient temperature exceeds 40 °C
- For any other operating conditions impacting the cooling circuit please refer to applications

Note: Requirement for operating in an ambient exceeding 60 °C and altitude exceeding 4000 meters must be referred to applications.

Dimensional and Torsional Drawing

For dimensional and torsional information please refer to the alternator General Arrangement and rotor drawings available on our website (http://stamford-avk.com/)

Note: Continuous development of our products means that the information contained in our data sheets can change without notice, and specifications should always be confirmed with Cummins Generator Technologies prior to purchase.

Follow us @stamfordavk

Cummins Generator Technologies

View our videos at youtube.com/stamfordavk

news.stamford-avk.com

For Applications Support: ± 0.5% applications@cummins.com

For Customer Service: service-engineers@stamford-avk.com

For General Enquiries: info@cumminsgeneratortechnologies.com

Copyright 2024. Cummins Generator Technologies Ltd. All rights reserved.

Cummins and the Cummins logo are registered trade marks of Cummins Inc.

STAMFORD is a registered trade mark of Cummins Generator Technologies Ltd.

