

S1L2-R1 Winding 05 / 705

S1L2-R1 - Technical Data Sheet

Standards

STAMFORD industrial alternators meet the requirements of IEC EN 60034 and the relevant section of other international standards such as BS5000, VDE 0530, NEMA MG1-32, IEC34, CSA C22.2-100 and AS1359. Other standards and certifications can be considered on request.

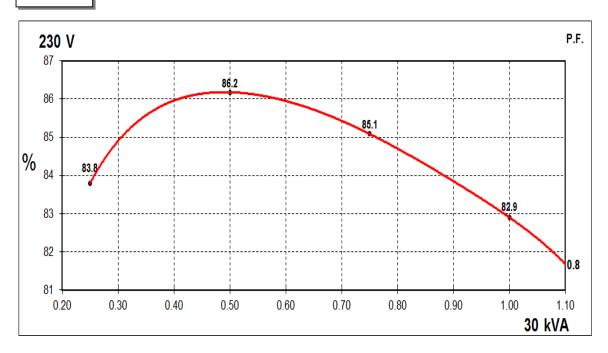
Quality Assurance

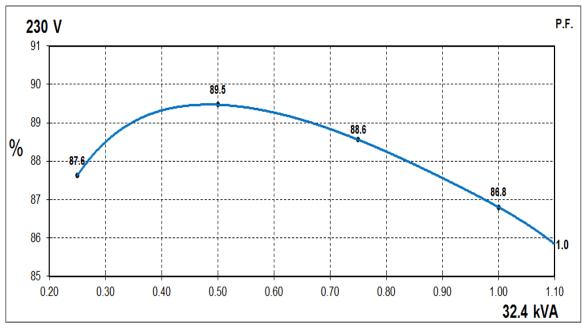
Alternators are manufactured using production procedures having a quality assurance level to BS EN ISO 9001.

Excitation and Voltage Regulators

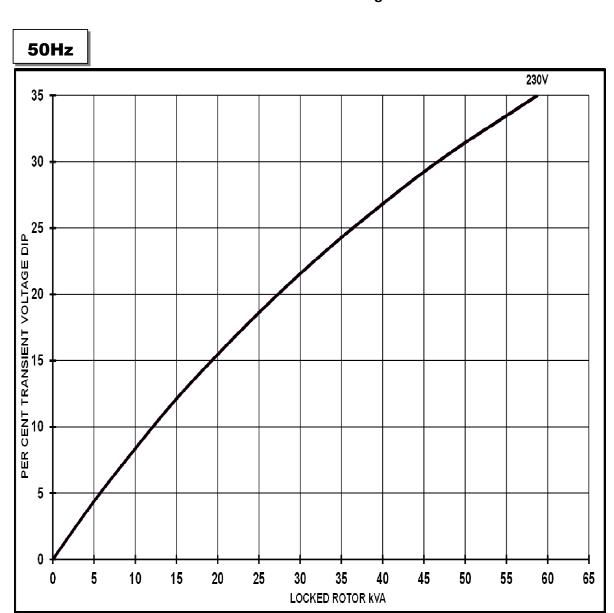
Excitation System				
AVR Type	AVR Power			
VITA01	Self-Excited / Aux winding			
Voltage Regulation	± 0.5%			
No Load Excitation Voltage (V)	13 V			
Full Load Excitation Voltage (V)	39 V			

Electrical Data						
Insulation System	Class H					
Stator Winding	Double Layer Concentric					
Winding Pitch	Two Thirds					
Winding Leads	4					
Winding Number	05 / 705					
Number of Poles	4					
IP Rating		IP23				
RFI Suppression	EN 61000-6-2 & EN 6100	0-6-4, refer to factory for others				
Waveform Distortion	NO LOAD < 2% NON-DISTORTII	NG BALANCED LINEAR LOAD < 5.0%				
Short Circuit Ratio		1/Xd				
Steady State X/R Ratio		3.9				
		50 Hz				
Telephone Interference	Ti	HF<2%				
Voltage Series	230	230				
Power Factor	0.8	1.0				
kVA Base Rating (Class H)	30	32.4				
Saturated Values in Per Unit at Base F	Ratings and Voltages					
Xd Dir. Axis Synchronous	0.994	1.074				
X'd Dir. Axis Transient	0.123	0.133				
X"d Dir. Axis Subtransient	0.102	0.110				
Xq Quad. Axis Reactance	1.000	1.080				
X"q Quad. Axis Subtransient	0.127	0.137				
XL Stator Leakage Reactance	0.061	0.066				
X2 Negative Sequence Reactance	0.167	0.180				
X0 Zero Sequence Reactance	0.005	0.005				
Unsaturated Values in Per Unit at Ba	se Ratings and Voltages					
Xd Dir. Axis Synchronous	1.360	1.469				
X'd Dir. Axis Transient	0.141	0.153				
X"d Dir. Axis Subtransient	0.119	0.129				
Xq Quad. Axis Reactance	1.030	1.112				
X"q Quad. Axis Subtransient	0.152	0.165				
XL Stator Leakage Reactance	0.069	0.074				
X2 Negative Sequence Reactance	0.200	0.216				
X0 Zero Sequence Reactance	0.006	0.006				
Time Constants (Seconds)						
T'd TRANSIENT TIME CONST.		0.033				
T"d SUB-TRANSTIME CONST.	0.002					
T'do O.C. FIELD TIME CONST.	0.204					
Ta ARMATURE TIME CONST.	0.013					

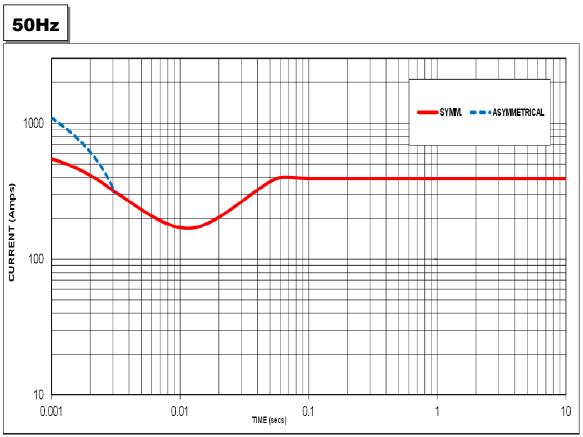



Resistances in Ohms (Ω) at 22°C					
Stator Winding Resistance (Ra)	$0.067~\Omega$ per phase series connected				
Rotor Winding Resistance (Rf)	1.1 Ω				
Exciter Stator Winding Resistance	14.3 Ω				
Exciter Rotor Winding Resistance	0.205 Ω per phase				
Positive Sequence Resistance (R1)	0.084 Ω				
Negative Sequence Resistance (R2)	0.096 Ω				
Zero Sequence Resistance (R0)	0.084 Ω				
Aux Winding Resistance (with	2.61 Ω				
winding 705 only)					
Mechanical data					
Cooling Air	0. 176 m³/sec (50Hz)				
a	All alternator rotors are dynamically balanced to better than				
Shaft and Keys	BS6861: Part 1 Grade 2.5 for minimum vibration in operation.				
Bearing	Single Bearing				
Weight Complete Alternator	199.65 kg				
Weight Wound Stator	85.08 kg				
Weight Wound Rotor	78.04 kg				
Moment of Inertia	0.3544 kgm²				
Shipping weight in a Crate	247 kg				
	1050X570X960 mm				
Packing Crate Size	1050X570X960 mm				
Packing Crate Size Maximum Over Speed	1050X5/0X960 mm 2250 RPM for two minutes				

Single Phase Efficiency Curves

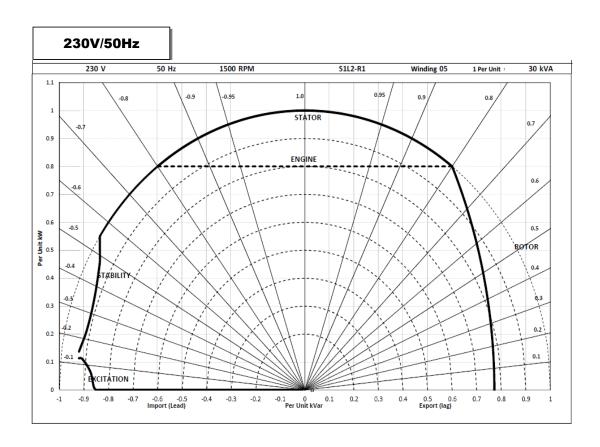

50Hz

Locked Rotor Motor Starting Curves



Transient Voltag	e Dip Scaling Factor	Transient Voltage Rise Scaling Factor
PF	Factor	
< 0.5	1.00	For voltage rise multiply voltage dip by 1.25
0.5	0.97	
0.6	0.93	
0.7	0.90	
0.8	0.85	
0.9	0.83]
1.0	0.80	

S1L2-R1 Winding 705 Short Circuit Decrement Curve


Note: Applicable only for Winding 705 (Auxiliary winding). Winding 05 (no Auxiliary winding) will not provide short circuit capability.

Sustained Short Circuit = 392 Amps

Typical Alternator Operating Chart

RATINGS AT 0.8/1.0 POWER FACTOR

	Class - Temp Rise	ss - Temp Rise Standby - 163/27℃		Standby - 150/40 ℃		Cont. H - 125/40 ℃		Cont. F - 105/40 ℃	
50	Series (V)	230	230	230	230	230	230	230	230
Hz	Power Factor	0.8	1.0	0.8	1.0	0.8	1.0	0.8	1.0
	kVA	33.0	35.6	32.0	34.6	30.0	32.4	27.3	29.5
	kW	26.4	35.6	25.6	34.6	24.0	32.4	21.8	29.5
	Efficiency (%)	81.7	85.9	82.1	86.1	82.9	86.8	83.7	87.5
	kW Input	32.3	41.5	31.2	40.2	29.0	37.3	26.1	33.7

De-Rates

All values tabulated above are subject to the following reductions:

- 3% for every 500 meters by which the operating altitude exceeds 1000 meters above mean sea level
- 3% for every 5 °C by which the operational ambient temperature exceeds 40 °C
- For any other operating conditions impacting the cooling circuit please refer to applications

Note: Requirement for operating in an ambient exceeding 60 °C and altitude exceeding 4000 meters must be referred to applications.

Dimensional and Torsional Drawing

For dimensional and torsional information please refer to the alternator General Arrangement and rotor drawings available on our website (http://stamford-avk.com/)

Note: Continuous development of our products means that the information contained in our data sheets can change without notice, and specifications should always be confirmed with Cummins Generator Technologies prior to purchase.

View our videos at youtube.com/stamfordavk

news.stamford-avk.com

For Applications Support: applications@cummins.com

For Customer Service: service-engineers@stamford-avk.com

For General Enquiries: info@cumminsgeneratortechnologies.com

Copyright 2024. Cummins Generator Technologies Ltd. All rights reserved.

Cummins and the Cummins logo are registered trade marks of Cummins Inc.

STAMFORD is a registered trade mark of Cummins Generator Technologies Ltd.

